Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
x²+bx+c -> Scheitelform
Beispiel:
Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit .
1. Weg
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis -4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(4|-14).
2. Weg
Wir betrachten nun nur . Deren Parabel sieht ja genau gleich aus wie nur um nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
| = | | | ||
| x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(4|y).
y = = = -14
also: S(4|-14).
ax²+bx+c -> Scheitelform
Beispiel:
Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit .
1. Weg
=
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(-1|2).
2. Weg
Wir betrachten nun nur . Deren Parabel sieht ja genau gleich aus wie nur um nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
| = | | | ||
| x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|y).
y = = = 2
also: S(-1|2).
