nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 56 h.

Wie lange bräuchten 7 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person56 h
7 Personen?

Um von 1 Personen in der ersten Zeile auf 7 Personen in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 h durch 7 teilen, um auf den Wert zu kommen, der den 7 Personen entspricht:

⋅ 7
1 Person56 h
7 Personen?
: 7
⋅ 7
1 Person56 h
7 Personen8 h
: 7

Damit haben wir nun den gesuchten Wert, der den 7 Personen entspricht: 8 h

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 6 Helfer:innen einstellt, reicht es für jeden 80 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Helfer:innen80 € Lohn
??
4 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Helfer:innen:


6 Helfer:innen80 € Lohn
2 Helfer:innen?
4 Helfer:innen?

Um von 6 Helfer:innen in der ersten Zeile auf 2 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Helfer:innen links entspricht:

: 3

6 Helfer:innen80 € Lohn
2 Helfer:innen?
4 Helfer:innen?

⋅ 3
: 3

6 Helfer:innen80 € Lohn
2 Helfer:innen240 € Lohn
4 Helfer:innen?

⋅ 3

Jetzt müssen wir ja wieder die 2 Helfer:innen in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Helfer:innen80 € Lohn
2 Helfer:innen240 € Lohn
4 Helfer:innen?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 240 € Lohn in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 Helfer:innen80 € Lohn
2 Helfer:innen240 € Lohn
4 Helfer:innen120 € Lohn

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 120 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Gäste10 Spezi-Flaschen
??
2 Gäste?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

⋅ 5
: 5

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 50 Spezi-Flaschen in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste25 Spezi-Flaschen

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Gäste entspricht: 25 Spezi-Flaschen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 4 Fuhren den 25 Lastwagen entsprechen.

: 2
⋅ 5

10 Lastwagen5 Fuhren
5 Lastwagen10 Fuhren
25 Lastwagen2 Fuhren

⋅ 2
: 5

Der urpsrünglich vorgegebene Wert 4 Fuhren (für 25 Lastwagen) war also falsch, richtig wäre 2 Fuhren gewesen.


Jetzt überprüfen wir, ob die 10 Fuhren den 5 Lastwagen entsprechen.

: 2
⋅ 1

10 Lastwagen5 Fuhren
5 Lastwagen10 Fuhren
5 Lastwagen10 Fuhren

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 10 Fuhren (für 5 Lastwagen) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 4 CPU-Kernen 6 ms rechnen.

Wie lange bräuchte ein Computer mit 3 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 CPU-Kerne6 ms
??
3 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


4 CPU-Kerne6 ms
1 CPU-Kern?
3 CPU-Kerne?

Um von 4 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 4

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 3 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 CPU-Kerne6 ms
1 CPU-Kern24 ms
3 CPU-Kerne8 ms

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 CPU-Kerne entspricht: 8 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 4 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


6 ms4 CPU-Kerne
??
4 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 ms teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 ms:


6 ms4 CPU-Kerne
2 ms?
4 ms?

Um von 6 ms in der ersten Zeile auf 2 ms in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 CPU-Kerne nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 ms links entspricht:

: 3

6 ms4 CPU-Kerne
2 ms12 CPU-Kerne
4 ms?

⋅ 3

Jetzt müssen wir ja wieder die 2 ms in der mittleren Zeile mit 2 multiplizieren, um auf die 4 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 ms4 CPU-Kerne
2 ms12 CPU-Kerne
4 ms6 CPU-Kerne

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 ms entspricht: 6 CPU-Kerne

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 20 km/h fliegt, braucht sie dafür 8 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 35 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
20 km/h8 min
( : 20 )( ⋅ 20 )
1 km/h160 min
( ⋅ 35 )( : 35 )
35 km/h 160 35 min

Die gesuchte Flugzeit ist also 160 35 = 32 7 = 4 4 7 ≈ 4.571 min