Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 45 mal fahren.
Wie oft müssten 5 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 5 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Fuhren durch 5 teilen, um auf den Wert zu kommen, der den 5 Lastwagen entspricht:
⋅ 5
|
![]() |
|
![]() |
: 5
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Lastwagen entspricht: 9 Fuhren
Dreisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 15 Minuten telefonieren würde, würden ihre Freiminuten noch genau 4 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 20 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 15 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 15 und von 20 sein, also der ggT(15,20) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:
|
Um von 15 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 20 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Tage in der mittleren Zeile durch 4 dividieren:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 20 Minuten pro Tag entspricht: 3 Tage
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
4 Lastwagen | 12 Fuhren |
? | ? |
3 Lastwagen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 4 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 Fuhren nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 48 Fuhren in der mittleren Zeile durch 3 dividieren:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Lastwagen entspricht: 16 Fuhren
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 27 Tage den 2 Minuten pro Tag entsprechen.
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Der urpsrünglich vorgegebene Wert 27 Tage (für 2 Minuten pro Tag) war also falsch, richtig wäre 25 Tage gewesen.
Jetzt überprüfen wir, ob die 10 Tage den 10 Minuten pro Tag entsprechen.
: 1
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 2
|
Der urpsrünglich vorgegebene Wert 10 Tage (für 10 Minuten pro Tag) war also falsch, richtig wäre 5 Tage gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 9 CPU-Kernen 5 ms rechnen.
Wie lange bräuchte ein Computer mit 15 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 9 ms rechnen könnte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 CPU-Kerne:
|
Um von 9 CPU-Kerne in der ersten Zeile auf 3 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 CPU-Kerne links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 15 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 CPU-Kerne entspricht: 3 ms
Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 9 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 ms teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 9 sein, also der ggT(5,9) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 ms:
|
Um von 5 ms in der ersten Zeile auf 1 ms in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 CPU-Kerne nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 ms links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 ms in der mittleren Zeile mit 9 multiplizieren, um auf die 9 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 9
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 9
|
Damit haben wir nun den gesuchten Wert, der den 9 ms entspricht: 5 CPU-Kerne
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 20 km/h fliegt, braucht sie dafür 4 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 41 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
Geschwindigkeit | Flugzeit |
---|---|
20 km/h | 4 min |
( : 20 ) | ( ⋅ 20 ) |
1 km/h | min |
( ⋅ 41 ) | ( : 41 ) |
41 km/h | min |
Die gesuchte Flugzeit ist also = 1 ≈ 1.951 min