Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Punkte auf Normalparabel
Beispiel:
Überprüfe, ob die Punkte auf der (nach oben geöffneten) Normalparabel mit dem Scheitel S(0|0) liegen .
A(0.6|3.6), B(|), C( |), D(-1|1)
A(0.6|3.6) liegt nicht auf der Normalparabel, weil y= =0.36 ≠ 3.6.
B(|) liegt nicht auf der Normalparabel, weil y= = ≠ .
C( |) liegt nicht auf der Normalparabel, weil y= = ≠ .
D(-1|1) liegt auf der Normalparabel, weil y= =1.
Term aus Schaubild (einfach)
Beispiel:
Im Schaubild erkennen wir, dass der Scheitel der verschobenen Normalparabel bei S(-3|0) liegt.
Die Parabel ist also um -3 Einheiten in x-Richtung verschoben. Der Funktionsterm ist demnach , in diesem Fall mit d= -3.
Der gesuchte Funktionsterm ist also: .
Term aus Schaubild - Normalparabel
Beispiel:
Im Schaubild erkennen wir, dass der Scheitel der verschobenen Normalparabel bei S(-1|-1) liegt.
Eine verschobene Normalparabel mit Scheitel S(d|e) hat den Funktionsterm y= ± .
Weil - nie größer Null werden kann, muss der größte Wert der Funktion bei x=d sein, weil hier gerade gleich Null ist. Wenn Der Scheitel nun als y-Wert e hat, so ist die Parabel um e Einheiten nach oben verschoben, also muss man zu - noch e addieren.
Wenn man nun beachtet, dass die verschobene Normalparabel nach unten geöffnet ist, und die Scheitelkoordinaten für d und e einsetzt, so erhält man als Funktionsterm: y= .
Scheitel von (x-d)² oder x²+e ablesen
Beispiel:
Die Funktion f mit ist eine quadratische Funktion. Ihr Graph ist eine Parabel. Bestimme den Scheitel.
Der gesuchte Funktionsterm ist ein Spezialfall von . Der kleinste Wert wird dabei also bei x=-5 angenommen. Dieser kleinste Wert ist dann y=0. Die Parabel hat also ihren Scheitel in S(-5|0).
Scheitel von (x-d)²+e ablesen
Beispiel:
Die Funktion f mit ist eine quadratische Funktion. Ihr Graph ist eine Parabel. Bestimme den Scheitel.
Der gesuchte Funktionsterm ist ein Spezialfall von . Der Scheitel liegt dabei bei S(d|e), denn der kleinste Wert wird hier bei x=1 angenommen. Dieser kleinste Wert ist dann y = -5. Die Parabel hat also ihren Scheitel in S(1|-5).
Weiterer Wert bei Normalparabel
Beispiel:
Der Punkt P(1|y) liegt auf einer nach oben geöffneten verschobenen Normalparabel mit Scheitel S(-1|2). Bestimme die y-Koordinate von P.
1. Weg
Eine nach oben geöffnete verschobene Normalparabel mit Scheitel S(d|e) hat den Funktionsterm .
Also muss der Funktionsterm der vorliegenden Parabel sein.
Setzt man nun x=1 in diesen Funktionsterm ein, so erhält man y = = = .
2. Weg
Der x-Wert von S ist genau 2 Einheiten vom x-Wert des Scheitels entfernt und weil ja eine verschobene Normalparabel die gleiche Form wie das Schaubild von y=x² hat, muss also auch hier der y-Wert um 2²=4 höher liegen als der des Scheitel. Man erhält also den y-Wert von P, in dem man zum y-Wert des Scheitels noch 4 drauf addiert, also y = 2+4 = 6.
Der Punkt P hat also die Koordinaten P(1|6).