Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Punkte auf Normalparabel
Beispiel:
Überprüfe, ob die Punkte auf der (nach oben geöffneten) Normalparabel mit dem Scheitel S(0|0) liegen .
A(1.1|0.121), B(-5|-10), C( |49), D(|)
A(1.1|0.121) liegt nicht auf der Normalparabel, weil y= =1.21 ≠ 0.121.
B(-5|-10) liegt nicht auf der Normalparabel, weil y= =25 ≠ -10.
C( |49) liegt nicht auf der Normalparabel, weil y= = ≠ 49.
D(|) liegt auf der Normalparabel, weil y= =.
Term aus Schaubild (einfach)
Beispiel:
Im Schaubild erkennen wir, dass der Scheitel der verschobenen Normalparabel bei S(-1|0) liegt.
Die Parabel ist also um -1 Einheiten in x-Richtung verschoben. Der Funktionsterm ist demnach , in diesem Fall mit d= -1.
Der gesuchte Funktionsterm ist also: .
Term aus Schaubild - Normalparabel
Beispiel:
Im Schaubild erkennen wir, dass der Scheitel der verschobenen Normalparabel bei S(4|2) liegt.
Eine verschobene Normalparabel mit Scheitel S(d|e) hat den Funktionsterm y= ± .
Weil nie kleiner Null werden kann, muss der kleinste Wert der Funktion bei x=d sein, weil hier gerade gleich Null ist. Wenn Der Scheitel nun als y-Wert e hat, so ist die Parabel um e Einheiten nach oben verschoben, also muss man zu noch e addieren.
Wenn man nun beachtet, dass die verschobene Normalparabel nach oben geöffnet ist, und die Scheitelkoordinaten für d und e einsetzt, so erhält man als Funktionsterm: y= .
Scheitel von (x-d)² oder x²+e ablesen
Beispiel:
Die Funktion f mit ist eine quadratische Funktion. Ihr Graph ist eine Parabel. Bestimme den Scheitel.
Der gesuchte Funktionsterm ist ein Spezialfall von . Der kleinste Wert wird dabei also bei x=0 angenommen. Dieser kleinste Wert ist dann y=-7. Die Parabel hat also ihren Scheitel in S(0|-7).
Scheitel von (x-d)²+e ablesen
Beispiel:
Die Funktion f mit ist eine quadratische Funktion. Ihr Graph ist eine Parabel. Bestimme den Scheitel.
Der gesuchte Funktionsterm ist ein Spezialfall von . Der Scheitel liegt dabei bei S(d|e), denn der kleinste Wert wird hier bei x=-9 angenommen. Dieser kleinste Wert ist dann y = -9. Die Parabel hat also ihren Scheitel in S(-9|-9).
Weiterer Wert bei Normalparabel
Beispiel:
Der Punkt P(2|y) liegt auf einer nach oben geöffneten verschobenen Normalparabel mit Scheitel S(-1|-3). Bestimme die y-Koordinate von P.
1. Weg
Eine nach oben geöffnete verschobene Normalparabel mit Scheitel S(d|e) hat den Funktionsterm .
Also muss der Funktionsterm der vorliegenden Parabel sein.
Setzt man nun x=2 in diesen Funktionsterm ein, so erhält man y = = = .
2. Weg
Der x-Wert von S ist genau 3 Einheiten vom x-Wert des Scheitels entfernt und weil ja eine verschobene Normalparabel die gleiche Form wie das Schaubild von y=x² hat, muss also auch hier der y-Wert um 3²=9 höher liegen als der des Scheitel. Man erhält also den y-Wert von P, in dem man zum y-Wert des Scheitels noch 9 drauf addiert, also y = -3+9 = 6.
Der Punkt P hat also die Koordinaten P(2|6).
