nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Schrägbild zeichnen

Beispiel:

Zeichne in ein Koordinatensystem die Eckpunkte A(3|3), B(6|3), C(7|4) und G(7|6) ein und verbinde diese der Reihe nach.

Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 3 Einheiten (oder 6 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(7-3|4) = D(4|4).

An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 6-4 = 2. Somit muss auch der Punkt E genau 2 Einheiten über dem Punkt A(3|3) liegen, also bei E(3|3+2) = E(3|5).

Gleiches gilt auch für den Punkt F, der genau 2 Einheiten über dem Punkt B(6|3) liegen muss, also bei F(6|3+2) = F(6|5).

Gleiches gilt auch für den Punkt H, der genau 2 Einheiten über dem Punkt D(4|4) liegen muss, also bei H(4|4+2) = H(4|6).

Oberfläche eines Quaders

Beispiel:

Ein Quader ist 4 dm lang, 8 dm breit und 5 dm hoch. Bestimme die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅4 dm⋅8 dm + 2⋅4 dm⋅5 dm + 2⋅8 dm⋅5 dm
= 64 dm² + 40 dm² + 80 dm²
= 184 dm²

Volumeneinheiten umrechnen

Beispiel:

Wandle das Volumen in die angegebene Einheit um: 18500000000 mm³ = ..... dm³

Lösung einblenden
Die korrekte Antwort lautet:
18500000000 mm³ = 18500 dm³

Volumen eines Quaders

Beispiel:

Ein Quader ist 4 dm lang, 3 dm breit und 10 dm hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 4 dm ⋅ 3 dm ⋅ 10 dm
= 120 dm³

Volumen auch rückwärts

Beispiel:

Ein Quader ist 2 m breit, 10 m hoch und hat das Volumen V = 180 m³. Bestimme die Länge a des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 180 m³ = ⬜ ⋅ 2 m ⋅ 10 m

180 m³ = ⬜ ⋅ 20 m²

Das Kästchen kann man also mit 180 m³ : 20 m² = 9 m berechnen.

Quader: Volumen + Oberfläche

Beispiel:

Ein Quader ist 6 dm lang, 10 dm hoch und hat das Volumen V = 480 dm³. Bestimme die Breite b und die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 480 dm³ = 6 dm ⋅ ⬜ ⋅ 10 dm

480 dm³ = ⬜ ⋅ 60 dm²

Das Kästchen kann man also mit 480 dm³ : 60 dm² = 8 dm berechnen.

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅6 dm⋅10 dm + 2⋅6 dm⋅8 dm + 2⋅10 dm⋅8 dm
= 120 dm² + 96 dm² + 160 dm²
= 376 dm²

Raumeinheiten verrechnen

Beispiel:

Berechne und gib das Ergebnis in cm³ an:

93 dm³ + 1230 ml

Lösung einblenden

Als erstes ersetzen wir die Liter (l) durch dm³ und die Milliliter (ml) durch cm³:

93 dm³ + 1230 cm³

Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:

93 dm³ = 93000 cm³

Jetzt können wir die beiden Werte gut verrechnen:

93 dm³ + 1230 cm³
= 93000 cm³ + 1230 cm³
= 94230 cm³

Volumen - Masse bei Wasser

Beispiel:

Ein Kubikzentimeter Wasser wiegt ein Gramm.

Wie viel wiegen 7000 mm³ Wasser ?

Lösung einblenden

7000 mm³ = 7 cm³

1 cm³ ≙ 1 g

Somit wiegen 7 cm³ Wasser eben 7 g

Quadervolumen offen

Beispiel:

Ein Quader ist hat das Volumen 45 m³. Jede der drei Kantenlänge ist größer als 1 m.

Bestimme mögliche Kantenlängen a, b und c.

Lösung einblenden

Mögliche Werte wären z.B.:
a = 3 m
b = 3 m
c = 5 m,
denn V = a ⋅ b ⋅ c = 3 m ⋅ 3 m ⋅ 5 m = 45 m³.