nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 2 x -3 = x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 3

D=R\{ 3 }

Wir multiplizieren den Nenner x -3 weg!

- 2 x -3 = x |⋅( x -3 )
- 2 x -3 · ( x -3 ) = x · ( x -3 )
-2 = x ( x -3 )
-2 = x 2 -3x
-2 = x 2 -3x | - x 2 +3x

- x 2 +3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · ( -1 ) · ( -2 ) 2( -1 )

x1,2 = -3 ± 9 -8 -2

x1,2 = -3 ± 1 -2

x1 = -3 + 1 -2 = -3 +1 -2 = -2 -2 = 1

x2 = -3 - 1 -2 = -3 -1 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +3x -2 = 0 |: -1

x 2 -3x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 2 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

1 - 8 x = x -5

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

1 - 8 x = x -5 |⋅( x )
1 · x - 8 x · x = x · x -5 · x
x -8 = x · x -5x
x -8 = x 2 -5x | - x 2 +5x

- x 2 +6x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -8 ) 2( -1 )

x1,2 = -6 ± 36 -32 -2

x1,2 = -6 ± 4 -2

x1 = -6 + 4 -2 = -6 +2 -2 = -4 -2 = 2

x2 = -6 - 4 -2 = -6 -2 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x -8 = 0 |: -1

x 2 -6x +8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 8 = 9 - 8 = 1

x1,2 = 3 ± 1

x1 = 3 - 1 = 2

x2 = 3 + 1 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 2 ; 4 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3 = - 2x x +2 - x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

Wir multiplizieren den Nenner x +2 weg!

3 = - 2x x +2 - x |⋅( x +2 )
3 · ( x +2 ) = - 2x x +2 · ( x +2 ) -x · ( x +2 )
3( x +2 ) = -2x - x ( x +2 )
3x +6 = -2x - x ( x +2 )
3x +6 = - x 2 -4x
3x +6 = - x 2 -4x | + x 2 +4x

x 2 +7x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · 6 21

x1,2 = -7 ± 49 -24 2

x1,2 = -7 ± 25 2

x1 = -7 + 25 2 = -7 +5 2 = -2 2 = -1

x2 = -7 - 25 2 = -7 -5 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 6 = 49 4 - 6 = 49 4 - 24 4 = 25 4

x1,2 = - 7 2 ± 25 4

x1 = - 7 2 - 5 2 = - 12 2 = -6

x2 = - 7 2 + 5 2 = - 2 2 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -6 ; -1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 5x -15 = - -4,8 x -3 - x

Lösung einblenden

D=R\{ 3 }

x 5x -15 = 4,8 x -3 - x
x 5( x -3 ) = 4,8 x -3 - x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x -3 ) weg!

x 5( x -3 ) = 4,8 x -3 - x |⋅( 5( x -3 ) )
x 5( x -3 ) · ( 5( x -3 ) ) = 4,8 x -3 · ( 5( x -3 ) ) -x · ( 5( x -3 ) )
x = 24 -5 x ( x -3 )
x = -5 x 2 +15x +24
x = -5 x 2 +15x +24 | +5 x 2 -15x -24

5 x 2 -14x -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +14 ± ( -14 ) 2 -4 · 5 · ( -24 ) 25

x1,2 = +14 ± 196 +480 10

x1,2 = +14 ± 676 10

x1 = 14 + 676 10 = 14 +26 10 = 40 10 = 4

x2 = 14 - 676 10 = 14 -26 10 = -12 10 = -1,2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -14x -24 = 0 |: 5

x 2 - 14 5 x - 24 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 5 ) 2 - ( - 24 5 ) = 49 25 + 24 5 = 49 25 + 120 25 = 169 25

x1,2 = 7 5 ± 169 25

x1 = 7 5 - 13 5 = - 6 5 = -1.2

x2 = 7 5 + 13 5 = 20 5 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1,2 ; 4 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

- 1 x = -14x +45 x 3

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 3 weg!

- 1 x = -14x +45 x 3 |⋅( x 3 )
- 1 x · x 3 = -14x +45 x 3 · x 3
- x 2 = -14x +45
- x 2 = -14x +45 | +14x -45

- x 2 +14x -45 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -14 ± 14 2 -4 · ( -1 ) · ( -45 ) 2( -1 )

x1,2 = -14 ± 196 -180 -2

x1,2 = -14 ± 16 -2

x1 = -14 + 16 -2 = -14 +4 -2 = -10 -2 = 5

x2 = -14 - 16 -2 = -14 -4 -2 = -18 -2 = 9

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +14x -45 = 0 |: -1

x 2 -14x +45 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -7 ) 2 - 45 = 49 - 45 = 4

x1,2 = 7 ± 4

x1 = 7 - 2 = 5

x2 = 7 + 2 = 9

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 5 ; 9 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

x +1 = - a x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

x +1 = - a x

Wir multiplizieren den Nenner x weg:

x +1 = - a x |⋅x
x · x + 1 · x = - a x · x
x 2 + x = - a
x 2 + x + a = 0
x 2 + x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 1 ist, also z.B.:

Mit p = 2 und q = -3 würde es funktionieren, denn -( 2 -3 ) = 1

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -3 ) = -6

Zur Probe können wir ja noch mit a = -6 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 + x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

L={ -3 ; 2 }