nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 + 8 27 = 20 27


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 4 ; "nicht blau": 3 4 ;

EreignisP
blau -> blau -> blau 1 64
blau -> blau -> nicht blau 3 64
blau -> nicht blau -> blau 3 64
blau -> nicht blau -> nicht blau 9 64
nicht blau -> blau -> blau 3 64
nicht blau -> blau -> nicht blau 9 64
nicht blau -> nicht blau -> blau 9 64
nicht blau -> nicht blau -> nicht blau 27 64

Einzel-Wahrscheinlichkeiten: P("blau")= 1 4 ; P("nicht blau")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau'-'nicht blau' (P= 3 64 )
  • 'blau'-'nicht blau'-'blau' (P= 3 64 )
  • 'nicht blau'-'blau'-'blau' (P= 3 64 )
  • 'blau'-'blau'-'blau' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 3 64 + 1 64 = 5 32