nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 9 rote, 2 gelbe, 9 blaue und 4 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 3 8 ; "nicht blau": 5 8 ;

EreignisP
blau -> blau 9 64
blau -> nicht blau 15 64
nicht blau -> blau 15 64
nicht blau -> nicht blau 25 64

Einzel-Wahrscheinlichkeiten: P("blau")= 3 8 ; P("nicht blau")= 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau' (P= 9 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 64 = 9 64


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "genau 2 mal C"?

Lösung einblenden

Da ja ausschließlich nach 'C' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'C' und 'nicht C'

Einzel-Wahrscheinlichkeiten :"C": 1 4 ; "nicht C": 3 4 ;

EreignisP
C -> C 1 16
C -> nicht C 3 16
nicht C -> C 3 16
nicht C -> nicht C 9 16

Einzel-Wahrscheinlichkeiten: P("C")= 1 4 ; P("nicht C")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'C'-'C' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 = 1 16