Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Verschiedene Vierecke
Beispiel:
Bei dieser Figur handelt es sich um ein/e (besondere(s)):
An den 4 rechten Winkeln und den 4 gleich langen Seiten kann man erkennen, dass es sich bei diesem Viereck um ein Quadrat handelt.
- Weil das abgebildete Viereck 2 gegenüber liegende Seiten hat, die parallel sind, ist dieses Viereck auch ein spezielles Trapez.
- Weil beim abgebildeten Viereck auf beiden Seiten die benachbarten Seiten gleich lang sind, ist dieses Viereck auch ein spezieller Drachen.
- Weil beim abgebildeten Viereck die gegenüber liegenden Seiten immer jeweils parallel und gleich lang sind, ist dieses Viereck auch ein spezielles Parallelogramm.
- Weil das abgebildete Viereck 4 gleich lange Seiten hat, ist dieses Viereck auch eine spezielle Raute.
- Weil das abgebildete Viereck 4 rechte Winkel hat, ist dieses Viereck auch ein spezielles Rechteck.
Das Viereck ist also: Quadrat, Rechteck, Raute, Parallelogramm, Drachen, Trapez, Viereck
Im Koordinatensystem ergänzen
Beispiel:
Gegeben sind die Punkte A(2|1), B(7|2) und C(7|5). Zeichne die drei Punkte in ein Koordinatensystem und ergänze sie um einen Punkt D, so dass ein Parallelogramm ABCD entsteht.
Wenn ABCD ein Parallelogramm sein soll, muss ja die Seite AD parallel zu BC sein. Deswegen zeichnen wir eine Parallele zu BC durch A ein (blau), auf der D somit liegen muss. Aus dem selben Grund zeichnen wir eine Parallele zu AB durch C ein. Der einzige gemeinsame Punkt dieser beiden (blauen) Parallelen, ihr Schnittpunkt, muss somit D sein, weil dieser ja auf beiden Parallelen liegen musss.
Jetzt können wir dessen Koordinaten ablesen: D(2|4)