Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Umfang eines Kreises
Beispiel:
Ein Kreis hat den Durchmesser 61 cm. Bestimme seinen Umfang.
Wir wenden einfach die Formel
U = π ⋅ d
an und erhalten so:
U = π ⋅61 cm ≈ 191,637 cm
Vom Umfang zum Radius
Beispiel:
Ein Kreis hat den Umfang U = 16.5 m. Bestimme seinen Durchmesser.
Wir wenden einfach die Formel
U = π ⋅ d
an und stellen um nach:
d =
So erhalten wir:
d = m ≈ 5,252 m
Vom Umfang zum Radius
Beispiel:
Ein Kreis hat den Umfang U = 3.5 m. Bestimme seinen Radius.
Wir wenden einfach die Formel
U = 2π r
an und stellen um nach:
r =
So erhalten wir:
r = m ≈ 0,557 m
Kreisfläche
Beispiel:
Ein Kreis hat den Radius 47 cm. Bestimme seinen Flächeninhalt.
Wir wenden einfach die Formel
A = π ⋅ r2
an und erhalten so:
A = π ⋅ 472 cm² ≈ 6939,778 cm²
Von der Kreisfläche zum Radius
Beispiel:
Ein Kreis hat den Flächeninhalt A = 24.5 m². Bestimme seinen Radius.
Wir wenden einfach die Formel
A = π r2
an und stellen um nach:
r2 =
r =
So erhalten wir:
r ≈
Kreisfläche
Beispiel:
Ein Kreis hat den Radius 39,5 m. Bestimme seinen Flächeninhalt.
Wir wenden einfach die Formel
A = π ⋅ r2
an und erhalten so:
A = π ⋅ 39.52 m² ≈ 4901,67 m²
Teilflächen von Kreisen
Beispiel:
Berechne den Inhalt der blauen Fläche.
Man berechnet die blaue Fläche einfach als Differenz des Flächeninhalts des großen Kreises mit Radius r1=
Somit gilt:
A = π ⋅ 722 - π ⋅ 652
= 5184⋅π - 4225⋅π
=
959⋅π
Also A ≈ 3012,79 cm2
