Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Nullstellen berechnen
Beispiel:
Bestimme die Schnittpunkte der Funktion f mit mit der x-Achse.
An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
|
|
= | |
|
|
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:
S1(x-Werte berechnen (f(x) gegeben)
Beispiel:
Gegeben ist die Funktion f mit f(x)=
Es gilt f(x) = -5, also
|
|
= |
|
|
|
|
|
= | ||
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
|
= | |
|
|
| x1 | = |
2. Fall:
|
|
= | |
|
|
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
An den Stellen x1 =
x-Werte berechnen (schwerer)
Beispiel:
Gegeben ist die Funktion f mit f(x)=
Es gilt f(x) = 5, also
|
|
= |
|
|
|
|
|
= | |
|
|
|
|
= |
|
=
|
An der Stelle x1 =
Schnittpunkte berechnen
Beispiel:
Berechne die Schnittpunkte der Graphen der Funktionen f und g mit
An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:
|
|
= |
|
|
|
|
|
= | ||
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
|
= | |
|
|
| x1 | = |
2. Fall:
|
|
= | |
|
|
| x2 | = |
|
Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).
g(
g(
Termbestimmung mit Punktproben
Beispiel:
Bestimme a und n so, dass die Punkte A(1|
Wir setzen einfach die beiden Punkte A(1|
I:
II:
Aus I ergibt sich ja sofort
II:
Durch Ausprobieren mit ganzzahligen n erhält man so n=
Der gesuchte Funktionsterm ist somit:
Größenvergleich bei Potenzfunktionen
Beispiel:
Gegeben sind die Funktionen f mit f(x)=
Sortiere die drei Funktionswerte -f(-0.3), g(0.3) und -h(-0.3), ohne sie wirklich auszurechnen.
Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).
Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:
- -f(-0.3) = -
< 0( - 0,3 ) 2 - g(0.3) =
> 00,3 3 - -h(-0.3) = -
< 0( - 0,3 ) 4
Da g(0.3) der einzige positive Funktionswert ist, muss dieser also der größte sein.
Und weil die anderen beiden Werte negativ sind, schauen wir zunächst nur auf die Beträge:
Dabei gilt -f(-0.3) < -h(-0.3). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und
h(x)=x4 in rot),
aber auch direkt an den Zahlen:
0.34 =0.32 ⋅ 0.3 ⋅ 0.3, d.h. 0.34 < 0.32, also gilt - 0.34 > - 0.32.
Die richtige Reihenfolge ist also:
-f(-0.3)= -
Funktionswerte berechnen
Beispiel:
Gegeben ist die Funktion f mit f(x)=
Wir setzen 2 einfach für x in f(x)=
f(2) =
=
=
=
