Aufgabenbeispiele von Modellieren

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Extremwertaufgaben (Anwend.)

Beispiel:

Die Summe zweier Zahlen ist 8 . Wie groß muss man die erste Zahl wählen, damit das Produkt der beiden Zahlen größtmöglich wird? Wie groß ist dann dieses Produkt.

Lösung einblenden

1. Weg

y= x 2 +8x

Man erweitert die ersten beiden Summanden ( x 2 +8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 8x durch 2x und quadriert diese Ergebnis 4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +8x +16 -16

= x 2 +8x +16 + 1 · ( -16 )

= ( x +4 ) 2 -16

= ( x +4 ) 2 -16

Jetzt kann man den Scheitel leicht ablesen: S(-4|-16).


2. Weg

Von x 2 +8x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +8x = 0
x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-4|y).

y = ( -4 ) 2 +8( -4 ) = 16 -32 = -16

also: S(-4|-16).


Für x=-4 bekommen wir also mit -16 einen extremalen Wert von x 2 +8x