Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -8x = 0
x ( x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -8 = 0 | +8
x2 = 8

L={0; 8 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 2 x 2 -6x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -6x = 0
2 x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+3 2 = 1.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(1.5|y) mit y = 2 1,5 2 -61,5 = 4,5 -9 = -4.5.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=3 , Scheitel: S(1.5|-4.5).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 1 2 x -5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 1 2 x -5 = 0 |⋅ 2
2( x 2 + 1 2 x -5 ) = 0

2 x 2 + x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 2 · ( -10 ) 22

x1,2 = -1 ± 1 +80 4

x1,2 = -1 ± 81 4

x1 = -1 + 81 4 = -1 +9 4 = 8 4 = 2

x2 = -1 - 81 4 = -1 -9 4 = -10 4 = -2,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 + x -10 = 0 |: 2

x 2 + 1 2 x -5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 4 ) 2 - ( -5 ) = 1 16 + 5 = 1 16 + 80 16 = 81 16

x1,2 = - 1 4 ± 81 16

x1 = - 1 4 - 9 4 = - 10 4 = -2.5

x2 = - 1 4 + 9 4 = 8 4 = 2

L={ -2,5 ; 2 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -2,5 |0) und N2( 2 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -2 ) 2
und
g(x)= 25 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -2 ) 2 = 25 | 2

1. Fall

x -2 = - 25 = -5
x -2 = -5 | +2
x1 = -3

2. Fall

x -2 = 25 = 5
x -2 = 5 | +2
x2 = 7

L={ -3 ; 7 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = 25

g( 7 ) = 25

Die Schnittpunkte sind also S1( -3 | 25 ) und S2( 7 | 25 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 + x -18
und
g(x)= 4 x 2 +2x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 + x -18 = 4 x 2 +2x +2 | -4 x 2 -2x -2

x 2 - x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

L={ -4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = 4 ( -4 ) 2 +2( -4 ) +2 = 416 -8 +2 = 64 -8 +2 = 58

g( 5 ) = 4 5 2 +25 +2 = 425 +10 +2 = 100 +10 +2 = 112

Die Schnittpunkte sind also S1( -4 | 58 ) und S2( 5 | 112 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +11 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m=3.

Der Term der abgebildeten Geraden ist also y= 3x +1 oder f(x)= 3x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3x +1 = - x 2 +11 | + x 2 -11

x 2 +3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

L={ -5 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 +11 = -25 +11 = -14

g( 2 ) = - 2 2 +11 = -4 +11 = 7

Die Schnittpunkte sind also S1( -5 | -14 ) und S2( 2 | 7 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -5x +4 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Der Funktionterm ( x -1 ) ( x -4 ) hat nun also genau die gleichen Nullstellen wie y= x 2 -5x +4 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x -1 ) ( x -4 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +1 ) ( x -1 ) .