Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 9 Schüler mit NWT-Profil, 3 Schüler mit sprachlichem Profil, 9 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 3 8 ; "nicht NWT": 5 8 ;

EreignisP
NWT -> NWT 3 23
NWT -> nicht NWT 45 184
nicht NWT -> NWT 45 184
nicht NWT -> nicht NWT 35 92

Einzel-Wahrscheinlichkeiten: P("NWT")= 3 8 ; P("nicht NWT")= 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 45 184 )
'nicht NWT'-'NWT' (P= 45 184 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

45 184 + 45 184 = 45 92


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 8 vom Typ Kreuz, 3 vom Typ Herz, 4 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 14 95
Kreuz -> Herz 6 95
Kreuz -> Pik 8 95
Kreuz -> Karo 2 19
Herz -> Kreuz 6 95
Herz -> Herz 3 190
Herz -> Pik 3 95
Herz -> Karo 3 76
Pik -> Kreuz 8 95
Pik -> Herz 3 95
Pik -> Pik 3 95
Pik -> Karo 1 19
Karo -> Kreuz 2 19
Karo -> Herz 3 76
Karo -> Pik 1 19
Karo -> Karo 1 19

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 2 5 ; P("Herz")= 3 20 ; P("Pik")= 1 5 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 14 95 )
'Herz'-'Herz' (P= 3 190 )
'Pik'-'Pik' (P= 3 95 )
'Karo'-'Karo' (P= 1 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

14 95 + 3 190 + 3 95 + 1 19 = 47 190


nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 10 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 6 ; "nicht 3": 5 6 ;

EreignisP
3 -> 3 1 46
3 -> nicht 3 10 69
nicht 3 -> 3 10 69
nicht 3 -> nicht 3 95 138

Einzel-Wahrscheinlichkeiten: P("3")= 1 6 ; P("nicht 3")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 46 = 1 46


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 1 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 3 1 2
= 1 3 1
= 1 3

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 4 Schüler mit NWT-Profil, 3 Schüler mit sprachlichem Profil, 9 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 5 ; "nicht NWT": 4 5 ;

EreignisP
NWT -> NWT 3 95
NWT -> nicht NWT 16 95
nicht NWT -> NWT 16 95
nicht NWT -> nicht NWT 12 19

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 5 ; P("nicht NWT")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 12 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 19 = 12 19