Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal Zahl"?

Lösung einblenden

Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'

Einzel-Wahrscheinlichkeiten :"Zahl": 1 2 ; "nicht Zahl": 1 2 ;

EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> nicht Zahl 1 8
Zahl -> nicht Zahl -> Zahl 1 8
Zahl -> nicht Zahl -> nicht Zahl 1 8
nicht Zahl -> Zahl -> Zahl 1 8
nicht Zahl -> Zahl -> nicht Zahl 1 8
nicht Zahl -> nicht Zahl -> Zahl 1 8
nicht Zahl -> nicht Zahl -> nicht Zahl 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("nicht Zahl")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'Zahl' (P= 1 8 )
  • 'Zahl'-'Zahl'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 = 1 2


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 4 vom Typ rot, 7 vom Typ blau und 4 vom Typ gelb. Es wird 2 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 16 225
rot -> blau 28 225
rot -> gelb 16 225
blau -> rot 28 225
blau -> blau 49 225
blau -> gelb 28 225
gelb -> rot 16 225
gelb -> blau 28 225
gelb -> gelb 16 225

Einzel-Wahrscheinlichkeiten: P("rot")= 4 15 ; P("blau")= 7 15 ; P("gelb")= 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 16 225 )
  • 'blau'-'blau' (P= 49 225 )
  • 'gelb'-'gelb' (P= 16 225 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 225 + 49 225 + 16 225 = 9 25