Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

4 x = 64

Lösung einblenden
4 x = 64 |lg(⋅)
lg( 4 x ) = lg( 64 )
x · lg( 4 ) = lg( 64 ) |: lg( 4 )
x = lg( 64 ) lg( 4 )
x = 3

L={ 3 }

Im Idealfall erkennt man bereits:

4 x = 64

4 x = 4 3

und kann so schneller und ohne WTR auf die Lösung x=3 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

6 -3x -3 = 1 6

Lösung einblenden

Wir schreiben einfach um:

6 -3x -3 = 1 6

6 -3x -3 = 6 -1

Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 6.

Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: -3x -3 und rechts: -1) gleichsetzen:

-3x -3 = -1 | +3
-3x = 2 |:(-3 )
x = - 2 3

L={ - 2 3 }

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 5 (25) .

Lösung einblenden

Wir suchen den Logarithmus von 25 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 25 zu kommen.

Also was muss in das Kästchen, damit 5 = 25 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 (25) = 2, eben weil 52 = 25 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 2 ( 2 5 ) .

Lösung einblenden

Wir suchen den Logarithmus von 2 5 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 2 5 zu kommen.

Also was muss in das Kästchen, damit 2 = 2 5 gilt.

Wenn wir jetzt die 2 5 als 2 1 5 umschreiben, steht die Lösung praktisch schon da: 2 = 2 1 5

log 2 ( 2 5 ) = 1 5 , eben weil 2 1 5 = 2 5 gilt .