Aufgabenbeispiele von Antiproportionale Zuordnung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 56 h.

Wie lange bräuchten 7 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person56 h
7 Personen?

Um von 1 Personen in der ersten Zeile auf 7 Personen in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 h durch 7 teilen, um auf den Wert zu kommen, der den 7 Personen entspricht:

⋅ 7
1 Person56 h
7 Personen?
: 7
⋅ 7
1 Person56 h
7 Personen8 h
: 7

Damit haben wir nun den gesuchten Wert, der den 7 Personen entspricht: 8 h

Dreisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 10 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 2 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Gäste10 Spezi-Flaschen
??
2 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

⋅ 5
: 5

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 50 Spezi-Flaschen in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste25 Spezi-Flaschen

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Gäste entspricht: 25 Spezi-Flaschen

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 € Lospreis100 Lose
??
2 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis100 Lose
1 € Lospreis?
2 € Lospreis?

⋅ 5
: 5

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 Lose in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 € Lospreis100 Lose
1 € Lospreis500 Lose
2 € Lospreis250 Lose

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 250 Lose

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 5 h den 3 Personen entsprechen.

: 4
⋅ 3

4 Personen6 h
1 Person24 h
3 Personen8 h

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 5 h (für 3 Personen) war also falsch, richtig wäre 8 h gewesen.


Jetzt überprüfen wir, ob die 5 h den 6 Personen entsprechen.

: 2
⋅ 3

4 Personen6 h
2 Personen12 h
6 Personen4 h

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 5 h (für 6 Personen) war also falsch, richtig wäre 4 h gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 10 Minuten telefonieren würde, würden ihre Freiminuten noch genau 3 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 15 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 6 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 Minuten pro Tag3 Tage
??
15 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 15 sein, also der ggT(10,15) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:


10 Minuten pro Tag3 Tage
5 Minuten pro Tag?
15 Minuten pro Tag?

Um von 10 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:

: 2

10 Minuten pro Tag3 Tage
5 Minuten pro Tag6 Tage
15 Minuten pro Tag?

⋅ 2

Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 15 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

10 Minuten pro Tag3 Tage
5 Minuten pro Tag6 Tage
15 Minuten pro Tag2 Tage

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 15 Minuten pro Tag entspricht: 2 Tage



Um von 3 Tage in der ersten Zeile auf 6 Tage in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 10 Minuten pro Tag durch 2 teilen, um auf den Wert zu kommen, der den 6 Tage entspricht:

⋅ 2
3 Tage10 Minuten pro Tag
6 Tage?
: 2
⋅ 2
3 Tage10 Minuten pro Tag
6 Tage5 Minuten pro Tag
: 2

Damit haben wir nun den gesuchten Wert, der den 6 Tage entspricht: 5 Minuten pro Tag

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Auf einer Großbaustelle müssen unglaubliche Mengen an Aushub abtransportiert werden. Dabei brauchen 5 LKWs genau 40 Fahrten. Wieviele Fahrten bräuchten 6 LKWs durchschnittlich?(Bitte auf eine Stelle hinterm Komma runden, auch wenn es inhaltlich keinen Sinn macht.)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

LKW-AnzahlFahrten-Anzahl
5 LKWs40 Fahrten
( : 5 )( ⋅ 5 )
1 LKWs200 Fahrten
( ⋅ 6 )( : 6 )
6 LKWs 200 6 Fahrten

Die gesuchte Fahrten-Anzahl ist also 200 6 = 100 3 = 33 1 3 ≈ 33.333 Fahrten