Aufgabenbeispiele von Antiproportionale Zuordnung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Wenn eine Person das Schulhaus putzt, braucht sie dafür 56 h.
Wie lange bräuchten 7 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Personen in der ersten Zeile auf 7 Personen in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 h durch 7 teilen, um auf den Wert zu kommen, der den 7 Personen entspricht:
⋅ 7
|
![]() |
|
![]() |
: 7
|
⋅ 7
|
![]() |
|
![]() |
: 7
|
Damit haben wir nun den gesuchten Wert, der den 7 Personen entspricht: 8 h
Dreisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 10 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 2 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 50 Spezi-Flaschen in der mittleren Zeile durch 2 dividieren:
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Gäste entspricht: 25 Spezi-Flaschen
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
5 € Lospreis | 100 Lose |
? | ? |
2 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 500 Lose in der mittleren Zeile durch 2 dividieren:
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 250 Lose
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 5 h den 3 Personen entsprechen.
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Der urpsrünglich vorgegebene Wert 5 h (für 3 Personen) war also falsch, richtig wäre 8 h gewesen.
Jetzt überprüfen wir, ob die 5 h den 6 Personen entsprechen.
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 5 h (für 6 Personen) war also falsch, richtig wäre 4 h gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 10 Minuten telefonieren würde, würden ihre Freiminuten noch genau 3 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 15 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 6 Tage reichen sollen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 15 sein, also der ggT(10,15) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:
|
Um von 10 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 15 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 15 Minuten pro Tag entspricht: 2 Tage
Um von 3 Tage in der ersten Zeile auf 6 Tage in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 10 Minuten pro Tag durch 2 teilen, um auf den Wert zu kommen, der den 6 Tage entspricht:
⋅ 2
|
![]() |
|
![]() |
: 2
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
Damit haben wir nun den gesuchten Wert, der den 6 Tage entspricht: 5 Minuten pro Tag
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Auf einer Großbaustelle müssen unglaubliche Mengen an Aushub abtransportiert werden. Dabei brauchen 5 LKWs genau 40 Fahrten. Wieviele Fahrten bräuchten 6 LKWs durchschnittlich?(Bitte auf eine Stelle hinterm Komma runden, auch wenn es inhaltlich keinen Sinn macht.)
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
LKW-Anzahl | Fahrten-Anzahl |
---|---|
5 LKWs | 40 Fahrten |
( : 5 ) | ( ⋅ 5 ) |
1 LKWs | Fahrten |
( ⋅ 6 ) | ( : 6 ) |
6 LKWs | Fahrten |
Die gesuchte Fahrten-Anzahl ist also = = 33 ≈ 33.333 Fahrten