Aufgabenbeispiele von vergleichen und ordnen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zwei rationale Zahlen vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Wert größer ist, bzw. ob beide Werte gleich groß sind:

Lösung einblenden

Um - 5 8 und -0.75 besser vergleichen zu können, wandeln wir -0.75 in einen Bruch um: -0,75 = - 75 100 = - 3 4

Vergleich von - 5 8 und -0.75= - 3 4

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

3 4 = 6 8

Also gilt: 5 8 < 6 8 = 3 4 .

Somit gilt für die positiven Brüche: 5 8 < 3 4
Für die negativen Werte gilt also - 5 8 > - 3 4 = -0.75 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von - 16 11 und - 17 11

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch (betragsmäßig) größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 11 teilt, als bei der kleineren, wenn man diese durch 11 teilt). Somit gilt für die positiven Brüche: 16 11 < 17 11
Für die negativen Werte gilt also - 16 11 > - 17 11 (Bei positiven Werten ist die größere Zahl ja immer weiter rechts auf dem Zahlenstrahl. Weil das negative Vorzeichen die Position aber an der 0 spiegelt, landet der betragsmäßig größere Wert dann weiter links)


Vergleich von 4 3 und 13 9

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

4 3 = 12 9

Also gilt: 4 3 = 12 9 < 13 9 .

Es gilt hier also 4 3 < 13 9


Mitte finden (ganze Zahlen)

Beispiel:

Welche Zahl liegt in der Mitte von -2 und 10 ?

Lösung einblenden

Man erkennt am Zahlenstrahl gut, dass 4 gleich weit von -2 und 10 entfernt ist (beides mal 6).

Die Mitte von -2 und 10 ist also: 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Drei rationale Zahlen sortieren

Beispiel:

Sortiere die drei Dezimalzahlen -0,967; -0,997 und -1 von klein nach groß.

Lösung einblenden

Da die Zahlen 3 Stellen oder weniger hinter dem Komma haben, können wir alle Dezimalzahlen auch als Brüch mit 1000 im Nenner schreiben:

-0,967 = - 967 1000

-0,997 = - 997 1000

-1 = - 1000 1000

Jetzt können wir einfach die Zähler sortieren:

-1000 < -997 < -967

Somit gilt für die gegebenen Dezimalzahlen:

-1 < -0,997 < -0,967

Mitte finden (Dezimalzahlen)

Beispiel:

Welche Zahl liegt in der Mitte von -0,8 und -0,4 ?

Lösung einblenden

Wir skizzieren am besten einen Zahlenstrahl und skalieren diesen mit Strichen immer nach 0.1, weil ja die beiden Zahlen bis zu 1 Stelle hintern dem Komma haben.

So erkennen wir dass das Strichchen genau in der Mitte zwischen -0,8 und -0,4 bei -0,6 sein muss.

Die Mitte von -0,8 und -0,4 ist also: -0,6

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Mitte finden (schwerer)

Beispiel:

Welche Zahl liegt in der Mitte von -0,5 und 0,3 ?

Lösung einblenden

Man erkennt am Zahlenstrahl gut, dass -0,1 gleich weit von -0,5 und 0,3 entfernt ist (beides mal 0,4).

Die Mitte von -0,5 und 0,3 ist also: -0,1

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(