Aufgabenbeispiele von Potenzfunktionen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 4 - x 2 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 4 - x 2 = 0
x 2 ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2(0|0), S3( 1 |0)

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -10x +17 . Berechne alle Stellen für die gilt: f(x) = -4.

Lösung einblenden

Es gilt f(x) = -4, also x 2 -10x +17 = -4.

x 2 -10x +17 = -4 | +4

x 2 -10x +21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 21 21

x1,2 = +10 ± 100 -84 2

x1,2 = +10 ± 16 2

x1 = 10 + 16 2 = 10 +4 2 = 14 2 = 7

x2 = 10 - 16 2 = 10 -4 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 21 = 25 - 21 = 4

x1,2 = 5 ± 4

x1 = 5 - 2 = 3

x2 = 5 + 2 = 7

An den Stellen x1 = 3 und x2 = 7 gilt also f(x)= -4.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 ( x +3 ) 4 +37 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also -2 ( x +3 ) 4 +37 = 5.

-2 ( x +3 ) 4 +37 = 5 | -37
-2 ( x +3 ) 4 = -32 |: ( -2 )
( x +3 ) 4 = 16 | 4

1. Fall

x +3 = - 16 4 = -2
x +3 = -2 | -3
x1 = -5

2. Fall

x +3 = 16 4 = 2
x +3 = 2 | -3
x2 = -1

An den Stellen x1 = -5 und x2 = -1 gilt also f(x)= 5.

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= -2 x 2 -7x +19 und g(x)= -3x +3 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

-2 x 2 -7x +19 = -3x +3 | +3x -3
-2 x 2 -4x +16 = 0 |:2

- x 2 -2x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · ( -1 ) · 8 2( -1 )

x1,2 = +2 ± 4 +32 -2

x1,2 = +2 ± 36 -2

x1 = 2 + 36 -2 = 2 +6 -2 = 8 -2 = -4

x2 = 2 - 36 -2 = 2 -6 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -2x +8 = 0 |: -1

x 2 +2x -8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -4 ) = -3( -4 ) +3 = 15 S1( -4 | 15 )

g( 2 ) = -32 +3 = -3 S2( 2 | -3 )

Termbestimmung mit Punktproben

Beispiel:

Bestimme a und n so, dass die Punkte A(1| - 3 4 ) und B(-2|-12 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1| - 3 4 ) und B(-2|-12 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: - 3 4 = a · 1 n
II: -12 = a · (-2) n

Aus I ergibt sich ja sofort - 3 4 = a. Dies können wir gleich in II einsetzen:

II: -12 = - 3 4 (-2) n | ⋅ ( - 4 3 )

16 = (-2) n

Durch Ausprobieren mit ganzzahligen n erhält man so n=4

Der gesuchte Funktionsterm ist somit: f(x)= - 3 4 x 4

Größenvergleich bei Potenzfunktionen

Beispiel:

Gegeben sind die Funktionen f mit f(x)= x 2 , g mit g(x)= x 3 , h mit h(x)= x 4 .
Sortiere die drei Funktionswerte f(-0.5), -g(0.5) und h(-0.5), ohne sie wirklich auszurechnen.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).

Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:

  • f(-0.5) = ( -0,5 ) 2 > 0
  • -g(0.5) = - 0,5 3 < 0
  • h(-0.5) = ( -0,5 ) 4 > 0
  • Da -g(0.5) der einzige negative Funktionswert ist, muss dieser also der kleinste sein.

    Und weil die anderen beiden Werte positiv sind, schauen wir nur auf die Beträge:

    Dabei gilt f(-0.5) > h(-0.5). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und h(x)=x4 in rot), aber auch direkt an den Zahlen:
    0.54 =0.52 ⋅ 0.5 ⋅ 0.5.

    Die richtige Reihenfolge ist also:
    -g(0.5)= - 0,5 3 < h(-0.5)= ( -0,5 ) 4 < f(-0.5)= ( -0,5 ) 2 .

Funktionswerte berechnen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 - x -8 . Berechne den Funktionswert f(2).

Lösung einblenden

Wir setzen 2 einfach für x in f(x)= x 2 - x -8 ein:

f(2) = 2 2 - 2 -8

= 4 -2 -8

= -6