Aufgabenbeispiele von Zylinder
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zylinder V und O
Beispiel:
Ein Zylinder hat den Radius 25,5 mm und die Höhe h = 10 mm. Bestimme sein Volumen und seine Oberfläche.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 25.52 mm² ≈ 2042,82 mm²
Für das Volumen müssen wir nun noch G = 2042.82 mm² mit der Höhe h = 10 mm multiplizieren:
V = G ⋅ h ≈ 2042.82 mm² ⋅ 10 mm ≈ 20428,21 mm³
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 10 mm und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅25.5 mm ≈ 160.22 mm
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 2042.82 mm² + 10 mm ⋅ 2π ⋅ 25.5 mm
≈ 4085.64 mm² + 10 mm ⋅ 160.22 mm
≈ 4085.64 mm² + 1602.21 mm²
≈
5687,85 mm²
Zylinder rückwärts (einfach)
Beispiel:
Ein Zylinder hat das Volumen V = 3166.7 m³ = und den Radius r = 12 m. Bestimme den Oberflächeninhalt O dieses Zylinders.
Um den gesuchten Oberflächeninhalt O berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch die Höhe h bestimmen. Hierfür nutzen wir das gegebene Volumen V.
Wir schreiben also einfach die Formel für das gegebene Volumen V auf und setzen alle gegebenen Größen ein.
V = G ⋅ h = π ⋅ r2 ⋅ h, also
π ⋅ r2 ⋅ h = V
alle gegebenen Größen eingesetzt:
= 3166.7
Jetzt verrechnen wir die Werte und lösen nach h auf:
=
| = | |: | ||
| = |
Wir erhalten also h = 7 und können nun damit den gesuchten Oberflächeninhalt O berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 122 m² ≈ 452,39 m²
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 7 m und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅12 m ≈ 75.4 m
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 452.39 m² + 7 m ⋅ 2π ⋅ 12 m
≈ 904.78 m² + 7 m ⋅ 75.4 m
≈ 904.78 m² + 527.79 m²
≈
1432,57 m²
Zylinder rückw. (alle Möglichk.)
Beispiel:
Ein Zylinder hat den Oberflächeninhalt O = 5064.2 mm² = und den Radius r = 26 mm. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch die Höhe h bestimmen. Hierfür nutzen wir den gegebenen Oberflächeninhalt O.
Wir schreiben also einfach die Formel für den gegebenen Oberflächeninhalt O auf und setzen alle gegebenen Größen ein.
O = 2G + M = 2π ⋅ r2 + 2π ⋅ r ⋅ h, also
2 ⋅ π ⋅ r2 + 2π ⋅ r ⋅ h = O
alle gegebenen Größen eingesetzt:
= 5064.2
Jetzt verrechnen wir die Werte und lösen nach h auf:
=
| = | | | ||
| = | |: | ||
| = |
Wir erhalten also h = 5 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 262 mm² ≈ 2123,72 mm²
Für das Volumen müssen wir nun noch G = 2123.72 mm² mit der Höhe h = 5 mm multiplizieren:
V = G ⋅ h ≈ 2123.72 mm² ⋅ 5 mm ≈ 10618,58 mm³
Zylinder Anwendungen
Beispiel:
Einen 5 m lange Dachrinne hat einen halbkreisförmigen Querschnitt und ist inklusiv ihres Randes 16 cm breit (Durchmesser des Halbkreises). Die Dachrinne ist aus einem 0,48 cm dicken Blech mit einer Dichte von 8 g/cm³ gefertigt. Wie schwer ist die Dachrinne?
Der Durchmesser des gesamten Halbzylinders ist ja mit d = 16 cm gegeben, also ist der äußere Radius r = 8 cm.
Da die Dicke des halben Hohlylinders 0,48 cm ist, muss also der innere Radius rin = 7,52 cm sein.
Dadurch ergibt sich für den Flächeninhalt des Querschnitts des halben Hohlylinders:
G = Aout - Ain = π r2 - π rin2 =
= π (8 cm)2 - π (7,52
cm)2
= 100,531 cm2 - 88,829 cm2
=
11,702 cm2
Damit können wir das Volumen des Hohlzylinders berechnen. Dazu multiplizieren wir einfach den Flächeninhalt des Kreisrings mit der Höhe des halben Hohlzylinders h = 500 cm:
V = 11,702 cm2 ⋅ 500 cm = 5851 cm3
Die gesuchte Masse erhalten wir nun noch durch Multiplizieren mit der Dichte 8 g/cm3:
m = 5851 cm3 ⋅ 8 g/cm3 = 46808 g = 46,808 kg.
