Aufgabenbeispiele von Prismen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Würfel V+O rückwärts
Beispiel:
Ein Würfel hat die Oberfläche O = 54 mm². Berechne die Kantenlänge.
Ein Würfel hat ja sechs gleich große Seitenflächen. Jede davon ist ein Quadrat mit der Kantenlänge a.
Also gilt für die Oberfläche eines Würfel mit Kantenlänge a:
O = 6 ⋅ a ⋅ a = 6a2
Es gilt somit:
54 mm² = 6 ⋅ ⬜2
Wenn 6 ⬜2 das Gleiche wie 54 ist, dann muss doch ein ⬜2 ein Sechstel von 54, also 9 ergeben.
9 mm² = ⬜2
Mit gezieltem Probieren findet man, dass dies mit a = 3 mm funktioniert.
Volumen eines Prisma
Beispiel:
Berechne das Volumen V des dargestellten, senkrechten Prismas.
Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 6 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = ⋅ Grundseite ⋅ Höhe (wofür beim rechtwinkligen Dreieck die Katheten benutzt werden können)
also hier:
A = ⋅ 4 cm ⋅ 4 cm = 8 cm²
Das wird dann mit der Höhe multipliziert: V = 8 cm² ⋅ 6 cm = 48 cm³
Volumen eines Prisma 2
Beispiel:
Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 40 cm. Berechne das Volumen des Prismas.
Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen berechnen wir zuerst den Flächeninhalt eines dieser 6 kleinen gleichseitigen Dreiecke und nutzen hierfür die Flächeninhaltsformel des Dreiecks:
ADreieck = c ⋅ hc
Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:
hc2 + ()2 = 72 |-()2
hc2 = 72 - ()2 = 72 - 3.52 = 49 - 12.25= 36.75
Daraus ergibt sich:
hc = ≈ 6.062
Und daraus ergibt sich wiederum für die Grundfläche ADreieck:
ADreieck = c ⋅ hc = ⋅ 7 ⋅ 6.062 ≈ 21.2
Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
ADreieck =
a2 =
Damit haben wir den Flächeninhalt eines der 6 gleichseitiogen Dreiecke. Um nun auf die gesamte Grundfläche des Prismas, also auf das regelmäßige Sechseck zu kommen, müssen wir lediglich diese Dreiecksfläche ADreieck mal 6 nehmen:
G = 6 ⋅ ADreieck ≈ 6 ⋅ 21.2 ≈ 127.3
Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=40 cm multiplizieren:
V = G ⋅ h ≈ 127.3 cm² ⋅ 40 cm ≈ 5092.2 cm³
Prismavolumen rückwärts (Skizze Grundfläche)
Beispiel:
Ein Prisma hat das Volumen V = 800 m³, die Höhe h = 50 m und als Grundfläche das abgebildete rechtwinklige gleichschenklige Dreieck.
Berechne die rote Strecke x.
Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G =
Jetzt müssen wir uns eine Formel für das rechtwinklige gleichschenklige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):
Nach dem Satz des Pythagoras gilt:
s2 + s2 = x2
also 2s2 = x2 oder eben s2
=
Für den Flächeninhalt des rechtwinklig und gleichschenkligen Dreiecks gilt wegen des rechten Winkels oben in C aber:
A =
mit s2 =
A =
Hier können wir jetzt die bereits ermittelte Grundfläche G = 16 einsetzen:
16 ≈
64 ≈ x2
x ≈
Für x = 8 m ist somit die Grundfläche G ≈ 16 m² und das Volumen des Prismas V ≈ 800 m³