Aufgabenbeispiele von Bogenmaß/Funktionen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
sin, cos Einheitskreis (Bogenmaß)
Beispiel:

Bestimme näherungsweise cos( ).
Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen
bedeutet eines Kreises, also von 360° = -90°.
Bei negativen Winkel muss man einfach in die andere Richtung, also im Urzeigersinn, im Einheitskreis vorgehen. Dabei landet man dann natürlich wieder an der gleichen Stelle wie bei -90° + 360° = 270°
Am Einheitskreis kann man den Wert für cos( ) bzw. für cos(-90°) ablesen:
cos
) bzw. cos(-90°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:
cos( °) ≈ 0
Winkel im Bogenmaß angeben
Beispiel:
Gib den Winkel α = 135° im Bogenmaß x an.
Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.
135° sind aber nur ein Kreis, also ist die gesuchte Bogenlänge x zu 135° auch nur ⋅ 2π = ⋅ π.
Jetzt müssen wir nur noch kürzen:
x = ⋅π = ⋅π = ⋅π
vom Bogenmaß ins Gradmaß
Beispiel:
Gib den Winkel x = π im Gradmaß α an.
Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.
Somit entspricht die Bogenlänge π dem Gradmaß 180°.
π entspricht also dem Gradmaß ⋅180° = -450°
Amplitude und Periode bestimmen
Beispiel:
Bestimme Amplitude und Periode der Funktion f mit .
Die Amplitude kann man sehr einfach als |a| bei a sin(b(x-c))+d ablesen, also ist die Amplitude A=6
Das b der allgemeinen Sinusfunktion a sin(b(x-c))+d ist in unserem Fall b=. Mit der
Periodenformel gilt dann für die Periode p==,
also p=
einfache Sinusbestimmung
Beispiel:
Die Original-Sinusfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Man sieht schnell, dass der Graph der gesuchten Funktion um 2 Einheit(en) in y-Richtung verschoben wurde. Also muss der gesuchte Term
sin(x-c)
Außerdem sieht man, dass der aufsteigende Wendepunkt (der ja bei sin(x) im Ursprung ist) hier um 1 Einheit(en) nach links verschoben ist. wir können also c=1 einsetzen und erhalten so den gesuchten Term:
allg. Sinusfunktion aus Schaubild
Beispiel:
Die Original-Sinusfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
- Zuerst suchen wir eine aufsteigende Wendestelle, die genau auf einem 'Kästchen-Kreuzchen' liegt. Das wäre hier im Punkt P(-1|0). Da bei sin(x) diese aufsteigende Wendestelle im Ursprung liegt, bedeutet das, dass der abgebildete Graph um 1 Einheit(en) nach links und um 0 Einheit(en) in y-Richtung verschoben wurde.
- Wir kennen nun von der allgemeinen Sinusfunktion f(x)=a⋅sin(b(x-c))+d die Parameter c=-1 und
d=0, also f(x)= f(x)=a⋅sin(b(x
+ 1 ))+ 0 - Da der y-Unterschied zwischen den Hochpunkten bei y=3 und den Tiefpunkten bei y=-3 gerade 6 beträgt, können wir einfach die Amplitude a=3 bestimmen.
- Bleibt noch der am schwierigsten zu bestimmende Parameter b. Diesen ermitteln wir über die Periode. Dazu schauen wir ausgehend von unserer steigenden
Wendestelle im Punkt P(-1|0) den Abstand zur fallenden Wendestelle (halbe Periode) oder zur nächsten steigenden Wendestelle an. Man erkennt gut, dass dieser Abstand ganzzahlig ist, nämlich gerade 2 zwischen steigender und fallender Wendestelle bzw. 4 zwischen zwei
steigenden Wendestellen. Eine Periode ist somit 4. Wir stellen die Periodenformel p=
2π b 2π p 2π 4 1 2 π
Der gesuchte Funktionsterm ist also
trigon. Anwendungsaufgabe
Beispiel:
In einem Wellenbad kann man an einer bestimmten Stelle die Wasserhöhe zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Periode dieses Vorgangs.
- Zu welcher Zeit (in s) ist die Wasserhöhe am höchsten?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
1 2 π Somit gilt für die Periodenlänge: p =
2 π b 2 π 1 2 π - t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 1 s.
Die Lösung ist also: 1 s.